0040-4039/78/0701-2417\$02.00/0

EFFECTIVE METHODS OF CARBONYL METHYLENATION USING CH₂I₂-Zn-Me₃Al AND CH₂Br₂-Zn-TiCl₄ SYSTEM

Kazuhiko Takai, Yuji Hotta, Koichiro Oshima,* and Hitosi Nozaki Department of Industrial Chemistry, Kyoto University Yoshida, Kyoto 606, Japan

(Received in Japan 31 March 1978; received in UK for publication 8 May 1978)

Reported are two methods for terminal olefin synthesis by means of the organozinc reagents which are prepared simply and effectively. The new technique provides an alternative to the Wittig reaction¹ which has some limitations.² The Wittig type carbonyl methylenation by means of CH_2I_2 -Zn has been described already especially in the presence of a large excess of zinc,^{3,4} although the recorded yields are far from satisfactory from the preparative point of view.

Based on our previous observations on the dramatic effect of co-existing organoaluminium reagents on the Reformatsky type aldol reaction,⁵ we have examined the behaviour of the CH_2I_2 -Zn reagent in the presence of a number of aluminium compounds and disclosed following general procedure of terminal olefin synthesis, the results of which are summarized in Table 1.

To a suspension of zinc dust⁶ (1.18 g, 18 mmol) and diiodomethane (1.61 g, 6.0 mmol) in dry tetrahydrofuran (THF, 10 ml) was added a solution of trimethylaluminium in hexane (1.0 M, 1.2 ml, 1.2 mmol) at 25° under argon atmosphere. The resulting mixture was stirred until the exothermic reaction had subsided (10 min). A solution of cinnamaldehyde (0.26 g, 2.0 mmol) in THF (2 ml) was added dropwise at 0° and the mixture was stirred for 1 hr. The mixture was diluted with ether (10 ml) and the organic solution was washed with 1N HCl (20 ml) and with brine (2x20 ml). Chromatography on a silica gel column (20 g, hexane) gave the desired olefin as a colourless liquid (0.20 g, 75% yield) which was identical with an authentic sample of 1-phenyl-1,3-butadiene.^{4a}

2417

entry	RCOR '		Temp	Time	RR'C=CH2
	R	R'	(°C) (hr)	Υ(%)b	
1	Ph	Н	25	1	86 ^C
2	Ph	Me	25	2	67 ^C
3	PhCH=CH-	Н	0	1	75
4	^{CH} 3 (CH ₂) 10 ⁻	н	0	4	81
5	CH ₃ (CH ₂) 7-	CH ₃ (CH ₂) 2-	25	2	62
6	- (CH ₂) ₁₁ -		25	6	65
7	(citral)		25	4	80

TABLE 1. Reaction of RCOR' with CH₂I₂-Zn-Me₂Al to Afford RR'C=CH₂^a

^aThree mol of CH₂I₂, nine mol of Zn and 0.6 mol of Me₃Al were employed per mol of carbonyl compound. ^bIsolated yield unless otherwise specified. ^CGlpc yield by internal standard method.

Rather surprisingly, no cyclopropanes were isolated, which should be ascribed to the Simmons-Smith reaction of the olefinic linkage of the carbonyl components (entry 3,7) or of the resulting RR'C=CH₂. Seyferth and Andrews⁷ obtained ICH₂SnMe₃ from the reaction of the Simmons-Smith reagent with Me₃SnCl. On the other hand our reagent gave CH₂(SnMe₃)⁸ exclusively under the same condition and no ICH₂SnMe₃.

$$\begin{array}{c} \text{CH}_{2}\text{I}_{2} & \underbrace{\text{Zn-Cu}}_{\text{Zn-Cu}} & [\text{ICH}_{2}\text{ZnI}] & \underbrace{\text{Me}_{3}\text{SnCl}}_{\text{ICH}_{2}\text{SnMe}_{3}} \\ \text{CH}_{2}\text{I}_{2} & \underbrace{\text{Zn-Me}_{3}\text{Al}}_{\text{Sn-Me}_{3}\text{Al}} & [\text{CH}_{2} \leq \underbrace{\text{ZnI}}_{\text{ZnI}}] & \underbrace{\text{Me}_{3}\text{SnCl}}_{\text{SnMe}_{3}} & \text{CH}_{2} \leq \underbrace{\text{SnMe}_{3}}_{\text{SnMe}_{3}} \end{array}$$

We therefore are tempted to attribute the formation of Wittig type olefins to the divalent species, although the role of Me_3Al is still not clear. This <u>gem</u>-dimetallic nature of the reagent has been further confirmed by the fact that preformed iodohydrin PhCH(OH)CH₂I⁹ was recovered practically unchanged after treatment with the reagent prepared as above. Olefination of aldehyde and ketone carbonyls by <u>gem</u>-dimetallic reagent of the type MCH₂M has been described to afford variable yields.¹⁰ Exclusive carbonyl methylenation of enals (entry 3,7) is unprecedented.

entry	RCOR '		Temp	Time	RR'C=CH2
	R	R'	(°C)	(hr)	Y(%) ^b
1	СH ₃ (CH ₂) ₇ - CH ₃ (CH ₂) ₂ -		25	12	89
2	$-(CH_2)_{11}$		25	12	80
3	$-(CH_2)_{6}^{2}$		25	6	83 ^C
4	(camphor)		25	40	92 ^C
5	(geranylacetone)		25	12	83
6	CH ₃ (CH ₂) ₁₀ -	Н	0	4	55 ^d

TABLE 2. Reaction of RCOR' with CH₂Br₂-Zn-TiCl₄ to Afford RR'C=CH₂^a

^aOne and a half mol of CH_2Br_2 , three mol of Zn and 1.1 mol of $TiCl_4$ were employed per mol of carbonyl compounds. ^bIsolated yield. ^CGlpc yield by internal standard method. ^dCH₃(CH₂)₁₀CH(OH)CH(OH)(CH₂)₁₀CH₃ was also obtained (24%).

The yields of the methylenated products from ketone could not be improved over 70% in spite of various attempts made. Examination of other Lewis acids has now disclosed the second procedure using TiCl_4 , which is effective with ketones and enables us to use CH_2Br_2 instead of CH_2I_2 .

The reaction of 4-dodecanone to 2-propyl-1-decene is typical. A suspension of zinc dust (0.59 g, 9.0 mmol) and CH_2Br_2 (0.52 g, 3.0 mmol) in THF (10 ml) was treated with TiCl₄ (2.2 ml of a 1.0 <u>M</u> dichloromethane solution, 2.2 mmol) at 25°. Instantaneous reaction occurred under evolution of heat and rapid colour change to dark brown. After 15 min, 4-dodecanone (0.37 g, 2.0 mmol) in THF (2 ml) was added dropwise and the resulting mixture was stirred at 25° for 12 hr. Extractive work-up followed by chromatography on a silica gel column (20 g, hexane) gave the desired olefin as a colourless oil (0.32 g, 89%): IR (neat) 1643, 890 cm⁻¹; NMR (CCl₄) δ 4.60 (S, 2H) 1.94 (bt, 4H); MS m/e (%) 56 (100), 139 (5, M⁺-43), 182 (4, M⁺).

The results were shown in Table 2. Neither cyclopropyl compound nor isomerized olefin was isolated. Entry 3^{11} and 4^{12} showed the superiority of the method over the Wittig reaction. The reductive coupling of RCOR¹³ was observed only with an aldehyde (entry 6), although the desired olefin was still produced in fair yield. Both systems of CH_2I_2 -Zn-Me₃Al and CH_2Br_2 -Zn-TiCl₄ are complementary. The mechanistic details are still obscure,

but the mild conditions and high yields characterize the two systems as a useful alternative for the Wittig carbonyl methylenation. 14

REFERENCES

- A. Maercker, Org. React., <u>14</u>, 270 (1965); A. W. Johnson, "Ylid Chemistry," Academic Press, New York, N. Y., 1966.
- R. L. Sowerby and R. M. Coates, J. Am. Chem. Soc., <u>94</u>, 4758 (1972) and references cited therein.
- 3. P. Turnbull, K. Syhora, and J. H. Fried, J. Am. Chem. Soc., <u>88</u>, 4764 (1966); I. T. Harrison, R. J. Rawson, P. Turnbull, and J. H. Fried, J. Org. Chem., <u>36</u>, 3515 (1971). The recorded high yields of hydroxy ketone reaction are ascribed to the assistance by hydroxyl being sterically allowed.
- (a) H. Hashimoto, M. Hida, and S. Miyano, J. Organomet. Chem., <u>10</u>, 518 (1967);
 (b) idem, ibid., <u>12</u>, 263 (1968). Although aldehydes provide reasonable yields, ketones are unreactive.
- 5. K. Maruoka, S. Hashimoto, Y. Kitagawa, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., 99, 7705 (1977).
- 6. The zinc dust was purified: L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," vol 1, p. 1276, John Wiley and Sons, Inc., New York, N. Y. 1967.
- 7. D. Seyferth and S. B. Andrews, J. Organomet. Chem., 30, 151 (1971).
- 8. The ¹H NMR spectrum in CCl₄ with CHCl₃ as an internal standard showed the signals for the methyl protons (δ 0.05) and the methylene protons (-0.29) with relative intensities of 9:1. The elemental analysis gave a satisfactory result. A. A. Buyakov, T. K. Gar, and V. F. Mironov (*2h. Obshch. Khim.*, <u>43</u>, 801 (1973)) recorded the compound to exhibit δ 0.29 CH₂ signal.
- 9. C. Golumbic and D. L. Cottle, J. Am. Chem. Soc., <u>61</u>, 996 (1939).
- F. Bertini, P. Grasselli, and G. Zubiani, Tetrahedron, <u>26</u>, 1281 (1970) and references cited therein.
- 11. A. Schriesheim, R. J. Muller, and C. A. Rowe, Jr., J. Am. Chem. Soc., <u>84</u>, 3164 (1962).
- 12. R. Greenwald, M. Chaykovsky, and E. J. Corey, J. Org. Chem., <u>28</u>, 1128 (1963)
- 13. T. Mukaiyama, T. Sato, and J. Hanna, Chem. Lett., 1041 (1973).
- Financial support by the Ministry of Education, Japanese Government, (Grant-in-Aid #247077) is acknowledged.

2420